Genetic and biochemical characterization of the F-ATPase operon from Streptococcus sanguis 10904.
نویسندگان
چکیده
Oral streptococci utilize an F-ATPase to regulate cytoplasmic pH. Previous studies have shown that this enzyme is a principal determinant of aciduricity in the oral streptococcal species Streptococcus sanguis and Streptococcus mutans. Differences in the pH optima of the respective ATPases appears to be the main reason that S. mutans is more tolerant of low pH values than S. sanguis and hence pathogenic. We have recently reported the genetic arrangement for the S. mutans operon. For purposes of comparative structural biology we have also investigated the F-ATPase from S. sanguis. Here, we report the genetic characterization and expression in Escherichia coli of the S. sanguis ATPase operon. Sequence analysis showed a gene order of atpEBFHAGDC and that a large intergenic space existed upstream of the structural genes. Activity data demonstrate that ATPase activity is induced under acidic conditions in both S. sanguis and S. mutans; however, it is not induced to the same extent in the nonpathogenic S. sanguis. Expression studies with an atpD deletion strain of E. coli showed that S. sanguis-E. coli hybrid enzymes were able to degrade ATP but were not sufficiently functional to permit growth on succinate minimal media. Hybrid enzymes were found to be relatively insensitive to inhibition by dicyclohexylcarbodiimide, indicating loss of productive coupling between the membrane and catalytic subunits.
منابع مشابه
Membrane-associated and solubilized ATPases of Streptococcus mutans and Streptococcus sanguis.
The proton-translocating, membrane ATPases of oral streptococci have been implicated in cytoplasmic pH regulation, acidurance, and cariogenicity. Membranes were isolated from Streptococcus mutans GS-5 and Streptococcus sanguis NCTC 10904 following salt-induced lysis of cells treated with lysozyme and mutanolysin. The ATPase activities of these membranes were 1.8 and 1.1 units per mg membrane pr...
متن کاملArginine deiminase system and acid adaptation of oral streptococci.
Streptococcus rattus FA-1 and Streptococcus sanguis NCTC 10904 underwent phenotypic acid adaptation in batch cultures toward the end of sugar-fueled growth after the culture pH had dropped to triggering values. The bacteria could be derepressed or induced for arginine deiminase independently of acid adaptation, and arginolysis afforded protection against acid killing over and above that of acid...
متن کاملAcid tolerance, proton permeabilities, and membrane ATPases of oral streptococci.
Differences in acid tolerance among representative oral streptococci were found to be related more closely to the dynamic permeabilities of the bacteria to protons than to differences in the sensitivities of cell membranes to gross damage caused by environmental acidification. For Streptococcus mutans GS-5, Streptococcus sanguis NCTC 10904, and Streptococcus salivarius ATCC 13419, gross membran...
متن کاملCloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904.
The common oral bacterium Streptococcus sanguis can degrade arginine via the arginine deiminase (AD) system. The three enzymes of this system, AD, ornithine carbamyltransferase (OTC), and carbamate kinase (CK), catalyze the breakdown of arginine to ornithine, CO2, and two molecules of ammonia, with the production of ATP from ADP. The genes of the AD system, which are subject to complex regulati...
متن کاملCharacterization of nutritionally variant streptococci by biochemical tests and penicillin-binding proteins.
A comparative study of 60 strains of nutritionally variant streptococci (NVS) with 34 strains of Streptococcus mitis and 37 strains of Streptococcus sanguis II showed the presence of a red chromophore which was absent in the other streptococcal species. By using the conventional microbiological tests, only small differences were found between the NVS and the two other related species. In contra...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 185 5 شماره
صفحات -
تاریخ انتشار 2003